Logarithmic differentiation

To differentiate $y=f(x)$, it is often easier to use logarithmic differentiation :

1. Take the natural logarithm of both sides to get $\ln y=\ln (f(x))$.
2. Differentiate with respect to x to get $\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \ln (f(x))$.
3. We get $\frac{d y}{d x}=y \frac{d}{d x} \ln (f(x))=f(x) \frac{d}{d x} \ln (f(x))$.

Logarithmic differentiation; Example

Find the derivative of $y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}$.

- We take the natural logarithm of both sides to get

$$
\ln y=\ln \sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}
$$

- Using the rules of logarithms to expand the R.H.S. we get $\ln y=$ $\frac{1}{4} \ln \frac{x^{2}+1}{x^{2}-1}=\frac{1}{4}\left[\ln \left(x^{2}+1\right)-\ln \left(x^{2}-1\right)\right]=\frac{1}{4} \ln \left(x^{2}+1\right)-\frac{1}{4} \ln \left(x^{2}-1\right)$
D Differentiating both sides with respect to x, we get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{1}{4} \cdot \frac{2 x}{\left(x^{2}+1\right)}-\frac{1}{4} \cdot \frac{2 x}{\left(x^{2}-1\right)}=\frac{x}{2\left(x^{2}+1\right)}-\frac{x}{2\left(x^{2}-1\right)}
$$

- Multiplying both sides by y, we get $\frac{d y}{d x}=y\left[\frac{x}{2\left(x^{2}+1\right)}-\frac{x}{2\left(x^{2}-1\right)}\right]$
- Converting y to a function of x, we get

$$
\frac{d y}{d x}=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}\left[\frac{x}{2\left(x^{2}+1\right)}-\frac{x}{2\left(x^{2}-1\right)}\right]
$$

Summary of Formulas for Logarithms

$$
\ln (x)
$$

$$
\begin{gathered}
\ln 1=0, \quad \ln e=1 \\
\ln (a b)=\ln a+\ln b, \quad \ln \left(\frac{a}{b}\right)=\ln a-\ln b \\
\ln a^{x}= \\
x \ln a
\end{gathered}
$$

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \ln x=\infty, \quad \lim _{x \rightarrow 0} \ln x=-\infty \\
\frac{d}{d x} \ln |x|=\frac{1}{x}, \quad \frac{d}{d x} \ln |g(x)|=\frac{g^{\prime}(x)}{g(x)} \\
\int \frac{1}{x} d x=\ln |x|+C \\
\int \frac{g^{\prime}(x)}{g(x)} d x=\ln |g(x)|+C .
\end{gathered}
$$

